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ABSTRACT

AN OVERLAPPED GRID METHOD FOR MULTIGRID,

FINITE VOLUME/DIFFERENCE FLOW SOLVERS - MaGGiE

Computing the flow fields about three-dimensional complex configurations

accurately becomes a difficult task, if it is attempted to generate a single, body

fitted grid with proper clustering. The domain decomposition methods, which

divide the computational domain into less complex subdomains, arc extensively

used to decrease the grid generation workload. A domain decomposition

technique also allows the use of different solution methods for different

subdomains. The objective of this work is to develop a domain decomposition

method via overlapping/embedding the component grids, which is to be used

by upwind, multigrid, finite volume solution algorithms. A computer code,

given the name MaGGiE, (Multi-Geometry Grid Embedder), is developed to meet

this objective. MaGGiE takes independently generated component grids as

input, and automatically constructs the composite mesh and interpolation data,

which can be used by the finite volume solution methods with or without

multigrid convergence acceleration. Six demonstrative examples, showing

various aspects of the overlap technique are presented and discussed. These

cases are: the grid of a blunt-nose cylinder, (BNC), embedded within a

Cartesian farfield, with finest level and multi-level grid connections, where

the flow Mach number is 1.6, and the angle of attack is 32°; the grid of BNC is

overlapped within a farfield mesh of similar topology for the same flow



conditions as the previous case; an ogive-nose cylinder, (ONC), in the

proximity of a fiat plate, where the flow Mach number is 2.86; a cylindrical

store model connected to an L-shaped sting, embedded within a Cartesian

farfield, where the flow Mach number is 1.65; a different cylindrical store

model with fins and a curved sting in the proximity of a cavity. These cases

are used for developing the procedure for overlapping grids of different

topologies, and to evaluate the grid connection and interpolation data for

finite volume calculations on a composite mesh. The flow solutions are

obtained for all the cases, except the one which involves the cavity. Time

fluxes are transferred between mesh interfaces using a trilinear interpolation

procedure. Conservation losses are minimal at the interfaces using this

method. The multigrid solution algorithm, using the coarser grid connections,

improves the convergence time history as compared to the solution on

composite mesh without multigridding.
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Chapter 1

INTRODUCTION

1.1 Rationale

Computational fluid dynamics (CFD) plays a dominant role in the aerospace

field because of the realization that CFD is an effective design tool which

complements and goes beyond experimental tests. Because of the rapid

development of computational fluid dynamics in the last decade, efficient

solvers, capable of solving the partial differential equations of fluid motion by

finite-difference (FD), finite-volume (FV) and finite-element (FIE) techniques,

have evolved. Validation of these codes have caused the important merging of

the computational and experimental disciplines. Coinciding with the

theoretical advancements is the continuing improvements of high speed and

large memory digital computers with vectorization and parallel processing

capabilities. The CFD community has lead the push for the state of the art

supercomputer technology and scientific workstations. With the continuing

advancements in computer hardware and software, it has become practical to

solve three dimensional complex flow domains, which were previously

thought to be beyond the reach of the computational fluid dynamics.

The term complex flow field can be defined as any physical domain in

which there are high flow field gradients, and a single or multiple bodies of

nonsmooth, multiple joint or disjoint geometries. A few examples of complex

flow domains are the flow around an aircraft, the flow between a wing and a



store, the flow between a store and a cavity, the flow between a wing and a

nacelle, etc.. Due to the complexities of these real bodies, it is a formidable task

to generate global, body fitted grids with, requisite smoothness and cell

clustering in high-gradient regions that are supportive to the new

sophisticated flow solvers. The body-fitted or boundary conforming

curvilinear grids are desirable, because they provide a basic advantage of

implementing the surface boundary conditions accurately. Also, a proper

surface oriented coordinate system enables coordinate-related approximations

to the equations of motions for arbitrary complex geometries. It becomes more

difficult to locally control the orthogonality, volume variations, cell aspect

ratios, and other grid measures, which affect the accuracy of the solution as

the geometric complexity increases [1]*. To reduce the grid generation task

about complicated geometries, several approaches, such as, domain

researchers.decomposition and unstructured grids, have been investigated by

The unstructured grid approach discretize the flow field by triangular

elements, or tetrahedrons, with nodes placed at the vertices. Discretizing the

flow by such element s Lgives flexibilities in grid generation about complex

geometries. The unstructured grid method is primarily used with finite-

element techniques. One disadvantage of unstructured grids is the extra

amount of storage needed for the grid structure order numbe(. It is a rather

difficult task to generate unstructured grids in the close proximity of a solid

surface, where example, clustering is needed for viscous s01ufigns. Also, since

FDM and FVM are computationally more efficient= when compared to FEM for

the Navier Stokes equations, unstructured grids may become les s des'Lrable.

However, a hybrid grid system composed__of unstructured an_dstructured grids

* The numbers in the braces indicate references.
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developed by Nakahashi et al. [2] offers a promising approach to complex flow

domains.

The domain decomposition techniques are of primary interest in this study

The two principle elements of the domain decomposition method, (DDM), are

the subdivision of the computational domain and the communication among

the subdomains. The DDM divides the flow region into simpler subdomains

within which grids are independently or semi-independently generated using

existing grid generation schemes. Some current grid generation methods are

the algebraic method, the conformal-mapping method, the differential-

equations method. An advantage of the DDM is that the flow regions requiring

grid clustering can be isolated into different subdomains. In addition, the

decomposition method enables the use of different partial differential

equations and solution methods for different subdomains. This is particularly

beneficial when using subdomains near and far away from a body. The Navier

Stokes equations can be used to investigate the domain near the body and the

Euler equations can be used in the farfield. This may result in a saving of

computer time. Another advantage of the DDM is the domain block-processing

scheme where only data corresponding to particular subdomain is required to

reside in the main memory of the computer at one particular time. Thus, the

block-processing technique ideally permits the use of unlimited global grid

sizes. The second and the most critical element of the DDM is the

communication between grid domain. Communication, or data transference,

between domain boundaries are accomplished by some type of interpolation

method of either nonconservative or conservative nature.

Zonal method (or grid patching) and grid overlapping/embedding are the

two most common domain decomposition techniques used by current

researchers. Zonal method incorporates the techniques of patching grids



together along common boundaries or surfaces to create a global grid. The

main disadvantage of using grid patching is that the patched zones of

connecting grids have to lie on the same surface. This characteristic of grid

patching increases the complexitites of grid generation for each subdomain.

Another discouraging feature of grid patching is the loss of conservation

across zones of high curvature.

An alternate domain decomposition method is the grid overlapping. Grid

overlapping entails dividing the flow domain into regions that overlap Of

share common physical and computational space. Within the overlap region,

the grids communicate through data transference by an interpolation

procedure. Grid embedding schemes allow the subdomains to be non-disjoint so

that one mesh may be embedded completely or partially within another. This

procedure permits each .... subdoma!n to be meshed _ independently with n 0

requirements of continuous grid lines across boundaries. Because each

subdomain grid is independent of another, grid generation task is greatly

reduced for complicated flow regions. Each subdomain mesh can be created

using different grid generation techniques suitable for that particular

domain. This is specially beneficial for subdomains which require high grid

densities. Again re-emphasizing, the advantage of grid overlapping/

embedding techniques is that subdomain grids of different topologies can be

connected in many different ways to encompass the entire flow field. This is

the driving force behind the current thesis work on the grid

overlapping/embedding method.

There are several drawbacks of using the embedding method, but most

problems can be partially or completely alleviated. The disadvantages are the

following: (i) the technique requires an overlap region between subdomains

which may not always be feasible, (ii) the accuracy of boundary data

,, =



transference depends on the interpolation procedure, whether it is

conservative or nonconservative, and (iii) the accuracy and convergence

speed of the solution indirectly depend on the degree of overlapping of the

grids relative to the size of the subdomains.

1.2 Literature Survey

In 1982, Hessenius et al. [3] developed a zoning technique for the Euler

equations within the framework of an implicit numerical scheme for one- and

two-dimensional equations. Their scheme required continuity of the mesh in

point and slope near the interfacing region. They concluded that proper flux

balancing was necessary, when zonal boundaries are present near converged

shock locations or in large gradient regions. In 1984, Rai [4] used a

conservative treatment of zonal boundaries for solving the Euler equations.

The scheme of Rai did not require continuity for mesh in point and slope at the

zonal boundaries. The capability of having grid discontinuities between zones

enhances the zonal method for complex flow domains. However, zonal

boundaries with moderate curvature were shown to lose conservation. In 1986

Hessenius et al. [5] were one of the first to develop a three dimensional

conservative boundary scheme for patched grids, applicable in generalized

coordinates, for arbitrary point distribution on a planar surface. It was shown

that the three-dimensional zonal method simplifies the grid generation about

complex configurations, by its application to the computation of flow about a

wing-canard combination, using two interfacing patched grids.

Kathong [6] studied the feasibility of the conservative Ramshaw [7] grid

patching procedure for applications to realistic three dimensional

aerodynamic configurations. The Ramshaw method has no restrictions on grid

slope or density across zonal boundaries. The results concluded that global



conservation can be maintained across grid interfaces for complex

configurations.

In 1989, Thomas et al. [8] developed a patched-grid algorithm for the

analysis of complex configurations using an implicit upwind-biased Navier-

Stokes solver. The patched-grid application_was directed towards the F-18

aircraft at subsonic, high angle of attack conditions. A difference between

spatlal-flux and time-flux conservation across zonal interfaces were compared.

It was noted that there was little difference in the results between the spatial-

flux and time flux conservation approach. The time flux approach

(interpolating to the cell center of one grid, assuming a linear variation of the

flux within cells of the other grid) was considered more flexible and lends

itself to more complicated conditions, such as, overlapped and embedded grids.

Thomas et al. proposed a long term objective to develop an automatic, generic

domain decomposition method to handle zonal, overlapped, and embedded grids

with the only constraint on the grids being that the grids encompass the

entire flow domain.

Another form of grid patching is a domain hybrid method developed by

Nakahashi et al. [9]. The hybrid method divides a complex domain into regions

of structured and unstructured grids as briefly discussed previously.

Structured grids are used in the viscous flow regions, and are patched together

using unstructured grids. With this technique both computational efficiency

of FDM or FVM in the structured region and that of FEM in the geometrical

flexible region of unstructured grids can be obtained.

Earlier work in grid overlapping was done for finite difference flow

solvers. In 1981, Atta [10] developed a method for constructing a two

dimensional grid system for solving the transonic flow field about complex

configurations with multiple components. His test model was a two component

6



configuration that consisted of an airfoil embedded in rectangular boundaries.

The results showed that the accuracy and convergence speed of an implicit

approximate factorization scheme depended on the extent of the overlap

region and the size of each subdomain. In 1982, Atta et al. [11] extended the two

dimensional overlap scheme to three dimensions for the case of an isolated

wing and a wing/pylon/nacelle configuration. The transfer of information

between grids within the overlap regions was done by a trivariatc

interpolation polynomial based on a linear Taylor series expansion. A fully

implicit, approximate factorization scheme was used for finite differenced, full

potential equations..

Bcnek et al. [12-14] developed a generic grid overlapping/embedding

procedure known as the "chimera scheme", for in two- and three-

dimensional, and finite difference solutions of the Eulcr equations. The

chimera scheme involves the automatic connection of multiple, overset grids,

and the use of differentsolution procedures for differentsubdomain grids. The

chimera scheme is one in which a major grid covers the entire flow region,

and minor grids are then overset on the major grid so as to resolve secondary

features of the configuration,such as, flaps,nacelles or stores,etc. The minor

grids are fully or partiallyoverlapped without, requiring the mcsh boundaries

to join in any special way. The minor grids create holes in the major grid,

which are excluded from the solution of the major grid. Communications

between the major and minor grids occur within the overlap regions. The

chimera method was successfully demonstrated on scvcral geometries for

inviscid flow. In 1987, Bcnck ct al. [15] extended the chimera grid embedding

scheme with applications to viscous flows. They developed generalization of

rules for constructing subdomains, and added thin-layer Navicr-Stokcs



equations to the model. These extensions to the chimera scheme were applied

to a single axisymmetric body and a three-body configuration.

In 1987, Suhs [16] used the chimera grid scheme in the computation of a

three dimensional cavity flow at subsonic and supersonic Mach numbers. The

cavity flow was calculated using an implicit, finite difference Navier-Stokes

code with thin-layer approximations. Although the thin layer approximations

are inappropriate for the unsteady cavity flow, Suhs showed the versatility of

the chimera scheme for simplifying a complex flow domain into simpler

subdomains of Cartesian grids.

In 1989, Dougherty et al. [17,18] applied the chimera grid scheme to three-

dimensional transonic store separation. Inviscid finite difference calculations

were carried out for a minor store mesh moving with respect to the major

mesh. The results indicate that allowing one mesh to move with respect to

another does not adversely effect the time accuracy of an unsteady flow. The

results of the moving mesh scenario shows the importance of

overlapped/embedded schemes. The flow around multiple bodies moving

relative to each other cannot be solved using single, patched or unstructured

grids.

Recently, Chesshire et al. [19,20] have developed a technique for the

generation of curvilinear composite overlap grids and the numerical solution

of partial differential equations on them. Continuity conditions through

interpolations are imposed at the overlap boundaries. Their grid construction

program, CMPGRD, is used to create composite, two dimensional, and very

recently three dimensional, grids with any number of component grids, for

finite difference and finite volume computations. The CMPGRD program can

generate a composite grid which can be used for second or higher order

spatial discretizations with appropriate higher order interpolation. However,



the higher order interpolations require a greater overlap region between

subdomains and considerably more calculations. CMPGRD program is also

designed to automatically generate the sequenceof coarser grids needed in a

multigrid algorithm flow solver.

1.3 Present Work

The objective of the present work is to develop an overlapping procedure

for multiple grids around complex flow configurations, which is to be used by

a multigrid, finite volume solution algorithm, and to apply this method to

several complex flow problems. The flow problems investigated are as follows:

blunt-nose cylinder embedded within two different farfield grid topologies,

with the flow at an angleof attack of 32°; supersonic flow past an ogive-nose

cylinder in the proximity of a flat plate; supersonic flow past a cylindrical

store model connected to an L-shaped sting; and a complex configuration of a

cylindrical store model with fins and curved sting in proximity of a cavity.

This report is divided into chapters of logical sequence.Chapter 2 conveys

the governing equations of fluid motion. The baseline solution algorithm on a

single domain is given in Chap. 3. Chapter 4 describes the grid overlapping

method for solvers with and without multigridding, after a brief introduction

on grid generation for subdomain grids. Grid interface conservation and

global accuracy are also discussed in this chapter. The flow solver

methodology for multiple subdomains, including modified solution algorithm

and run procedure, are also given in Chap. 4. Chapter 5 covers the grid

overlapping applications, a summary of comparisons and comments. The

concluding remarks and appropriate suggestions for further investigations in

this area are presented in Chap. 6.



Chapter 2

GOVERNING EQUATIONS OF FLUID FLOW

The governing equations are the three-dimensional, time dependent,

complete, Reynolds-averaged, Navier-Stokes equations, written in

conservative form and generalized curvilinear coordinates, _, 1'1, _:

¢)Q+_(F-Fv)! _G-Gv)t _H-Hv) -0

(2.1)

Written in a more compact indicial form the equation becomes

i

where i = 1, 2, 3 . The Q vector of conserved variables is

(2.2)

T

(2.3)

10



F i are the inviscid flux vectors,

Fi=

pUi ipuUi+ _xP
i

Jl pvUi+ _ypi

pwUi+ _zP
i

(E +P}Ui+ _pp
(2.4)

and Fv I are the viscous flux vectors,

m

0

i

_k _ K 1

Fly 1 i

i

_k'g k3

'( )_k U'I;kl+ v_" k2 + w'l; k3 -- q k

(2.5)

The contravariant velocity components are defined by

ul= u =gxU + _yV+ _w + _,

U 2= V=TIxU + l]yV + TlzW + Tit

u3= w = _xu+ _yV+ _zw+ _t

and the transformation Jacobian is defined by

(2.6)

a(x, y,z)

= x_, Y_Izg + xg y_, zrt + xrl y_ z_,

- x_ yg zll - xrl y_ zg - xg Yn z_ (2.7)

11



A geometrical interpretation of the metric terms can be made using a

control volume approach. The ratio of a metric derivative to the
/_ ._

transformation Jacobian for a given cell, for example ["/_], is taken tobethe

appropriate projected area of a cell face. The reciprocal of the Jacobian is

taken to be the cell volume. This approach ensures the geometric conservation

law to be compatible with the finite volume formulation.

by

The shear stress and heat flux terms used in the above equations are given

_kl =[l.
m 0Uk m _Ul 2
_+_k_I m m

0_ 04 3

_k2=_
m

m _U k
k3= _t _3 m

o4

m_T
qk=k_k

In

in_U k rn_U 2

rn _U n

8kt_" m

m _U n )

28k2_ n

3 O_m

m _Un
2 _ k3_n m

3 _

m _U 3
_+_k m

where k,n and m are dummy variables and _1=_, [2=_y, _3=_z.

The total energy, E, and the internal energy, e, are given by:

(:2.8)

11 2 2
E=e+_u +v +w 2)

e=CvT

The perfect gas law,

P = pRT (2.10)

12



and the Sutherland's molecular viscosity law,

1 +c/T.._= T_. _,¥ _---_j (2.11)

with c being the $uthcrland constant, and Stokes' hypothesis for bulk

viscosity,

_, + 2_/3 = 0 (:2.12)

completes the closure of the system of governing equations. Reynolds stresses

arc modeled by the standard Baldwin-Lomax algebraic turbulence model.

Further details of this formulation are given in [21,22].

13



Chapter 3

BASELINE SOLUTION ALGORITHM ON A SINGLE DOMAIN

The solution algorithm for multiple subdomains is based on an implicit,

upwind, finite-volume algorithm for a single domain. The solution algorithm

for the multiple subdomain algorithm is discussed in Chap. 4.

3.1 Finite Volume Discretlzation

Finite volume differencing is formulated by integrating the conservation

equations over a stationary control volume,

if f LQ,rv÷f f.g.ndS=O
Ot

(3.1)

where the flux vector _ is defined as

F-(F-Fv)_+{(3 -G,_J+IH-Hv)k (3.2)

and

n =n x +ny +nzk (3.3)

is the unit normal vector pointing outward from the surface S, bounding the

volume V l The direct discretization of the integral form ensures that mass,

momentum and energy are conserved at discrete levels. The conserved

variables, Q, are evaluated at cell centers and the fluxes, F i, are evaluated at

cell faces, The advantages of the finite volume formulation is that it remains

valid in the presence of discontinuities in the flow, such as shocks, and that it

14



it is tolerant to grid singularities because the flow equations are balanced over

each cell of the grid.

3.2 Upwind Differencing

The time-dependent Euler equations form a system of hyperbolic equations,

and upwind differencing [23-26] models the characteristic nature of these

equations in that information at each grid cell is obtained from directions

dictated by characteristic theory. Upwind methods have the advantage of

being naturally dissipative, unlike central differencing methods in which

artificial dissipation terms are generally needed to overcome oscillation or

instabilities arising in regions of high gradients.

3.3 Roe Flux-Difference-Splitting

The upwind scheme used for the test cases is based on the Roe flux-

difference-splitting. Roe flux-difference splitting [27] is used to construct the

upwind differences for the convective and pressure terms. If an eigenvalue of

a flux Jacobian vanishes, the corresponding eigenvalue of the dissipation

matrix also vanishes. This leads to a one or two cell resolution of

discontinuities such as shocks. The spatial derivatives are written

conservatively as flux balances across a cell, for example,

where the subscript 'i' refers to a cell center and i+1/2 corresponds to a cell

surface. The interface flux is determined from a state-variable interpolation

and a locally one-dimensional model of wave interactions normal to the cell

interfaces. The interface fluxes are exact solutions to an approximate Reimann

problem,

15



1
F i+_=_-( F{ QL)+_(QR)-I i I{ QR-QL)} i-e_ (3.5)

where QL and QR are the state variables to the loft and right of the cell

interfaces and

A=_//0Q=TAT "l-To +A +A') -1T
(3.6a)

(3.6b)

IAI--_1AI__ (3..)

The diagonal matrix A is the matrix of eigenvalues of A, and T, T "I are the

diagonalizing matrices. The state-variables QL and QR are formed from

interpolations of primitive variables. ( p, u, v, w, p ), which in effect

determines the resulting accuracy of the scheme.

The accuracy of the scheme used is second-order spatial and first order

temporal. Spatial approximate factorization and Euler backward time

integration results in the solution through 5x5 block-tridiagonal matrix

inversion in three directions. The delta form of the discretized Eq. (2.1) is

given by

[ ]I +8 _)F 82_Fv *

iJAr _'- _ o_Q AQ =AQ
=

:rI ]+ 84 aH 20Hv **

L

(3.7)

Qn+l =Qn +A Q (3.8)
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In the preceding equation, R(Q n) is the discretized representation of the

spatial derivative terms in Eq. (2.1) evaluated at time level (n), and 8, 82 denote

upwind and central-difference operators, respectively.

Employing the approximate diagonal form of the spatial factors of Eq. (3.7),

results in the saving of computational time for the initialization of flowfields.

Each of the spatial factors is approximated with a diagonal inversion [28] as

"]JA--"-_ _ AQ =T _i A +_ A T- AQ
JAt (3.9)

Because of the repeated eigenvalues of A, only scalar diagonal inversions

rather than block inversions are used in each direction.

3.4 Multigrld Method

Because of the additional computational work for the upwind flux-

difference splitting method, it is desirable to accelerate the convergence rate,

especially when steady-state solutions are sought. Accelerating the

convergence rate becomes increasingly important as the mesh is refined,

because the logarithm of the spectral radius for single-grid methods generally

increase linearly with the mesh size, thus computating on fine grids is

expensive. To accelerate the convergence rate, multigrid method is used with

the upwind, finite volume scheme. The multigrid method damps the low-

frequency errors which cause a slow asymptotic convergence rate by using a

sequence of grids G1,...,Gn. The grid G 1 denotes the finest grid. Successively

coarser grids can be formed by deleting every other mesh line on the next

finer mesh. The high frequency errors are easily damped out on a given grid

level while the low frequency errors remain. When transferring solution to a

coarser grid, the low frequency errors of the previous finer grid become

higher frequency errors due to the increase in cell sizes on the coarser grid.
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In turn, the high frequency errors on the coarser grid are damped out using

the same solution algorithm as on the previous finer grid [29-32].

A fixed V-cycle [23] strategy of solving from finest to coarsest then back to

finest grid levels, is used where a predetermined number of iterations is

performed at each grid level. The values of the dependent conserved variables

(Q) and the residual (R) are passed from a finer grid to a coarser grid through

volume-weighted restriction operators I i / and /I i ,respectively,

i+Qi+l=(Ii1Q,)

R i+l = Ii Ri

ii+l
i Qi= 2 VQ/5'v

,.i+1
I i Ri= g R i

(3.10a)

(3.10b)

(3.10c)

(3.10d)

where Qi+l and Ri+l are the next coarser level values obtained from the finest

i+1 ..i+1

level values. The equations (Ii Qi) and (Ii Ri) are found from

summations taken over all fine-grid cells that make up the coarse-grid cell,

where V is the cell volumes. The entire solution is computed and stored on

each grid level as opposed to only corrections being stored. This multigrid

process is referred to as the full-approximation scheme (FAg).

Denoting the discrete analog of the operation in Eq. (2.1) by (L), and the

relative truncation error by (E), the following equations are written,

L i+t{Qi+t} ffi R i+l +E i+1 (3.11)

Ei+l =Li÷l Ii Qi-Ii Ri ........ (3.il)

22 2 _

The solution on the coarse grid is driven by the fine grid: and: the relative

truncation error (E)betweeh-_¢ Coarse and fine grids_ During the: cyciing

process, when the coarsest level is reached, computed corrections to AQ values

;:

_q
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at each level are prolonged to the next finer level through trilinear

interpolations. One smoothing iteration is used to smooth the errors. The result

of this multigrid strategy is that most of the work is carried out on the coarser

grids where it is computationally cheaper due to the reduction of the number

of grid points. Because of these advantages, it is worth incorporating the

multigrid scheme within the multiblock, grid overlapping, solution algorithm.

A discussion of the flow solver methodolgy for multiple subdomains using the

multigridding technique will be discussed in Chap. 4.

3.5 Initial and Boundary Conditions

The accuracy of the solution to any physical flow is dependent on the

initial and boundary conditions. The initial conditions usually correspond to

the actual nature of the flow. The initial conditions lie in a range between the

simple free stream conditions and the best guessed solution obtained from

experiments, empirical relations, approximate theories, or previous

computational results. For a steady flow, the better the initialization of the flow

field, the faster the solution converges. There are two different initialization

procedures that can be used for a composite mesh. The first method is to simply

initialize all the flow subdomains with free stream conditions, however this

method is computationally costly. The second method is to advance the solution

on each subdomain independent of all other subdomains, using a mesh

sequencing procedure, in order to pass the numerical transient state. Mesh

sequencing is a method of quickly developing an approximate solution at a

coarser subdomain grid level, and prolonging the solution to the next finer

grid level until the characteristics of the flow are resolved on the finest level.

Both initialization procedures are utilized in this study.

Boundary conditions are specified explicitly for this implicit, finite volume

algorithm. There are five general boundary conditions that are used in all test
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cases; solid boundary, supersonic upstream, supersonic downstream,

inflow/outflow, and intcr-subdomain grid boundary.

At the solid boundaries, the conditions of no-slip and impermeability with

zero-normal-gradient for pressure and temperature are imposed. The density

at the surface is calculated by employing the state equation.

u=O,v=O,w=O, OT OP_=0, _ =0
On On

(3.12)

Upstream boundary conditions are dependent on the flow characteristics.

Supersonic inflow (excluding the boundary layer) have flow characteristics

pointing from the outside toward the inside of the computational domain.

Hence, the upstream boundary conditions can be specified by the supersonic

free stream conditions. For the case where the upstream boundary is in the

proximity of a surface, the boundary layer profile generated from the

boundary layer equations is used.

The supersonic downstream flow has characteristic' signals propagating

from inside the computational domain to outside. Hence, the downstream

boundary conditions are determined from zeroth-order extrapolation of

interior variables,

0v Ow _I' 0PaU=o,--=o,--=o,--=o,--=o

(3.13)

where _ indicates the streamwise coordinate.

Locally one-dimensional characteristic boundary conditions are used:f0r

the farfield boundaries. For each farfield cell, the normal velocity to the

7 _ •

boundary and the speed of sound are calculated form the two-locally one-

dimensional Riemann invariants given by

y
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Re=u+ 2..__aa

T- 1 (3.14)

The invariants are constant along the characteristic defined by

(--_--)+ = U + a
(3.15)

The appropriate boundary conditions are determined after the direction and

magnitude of local Mach number at each cell is checked. For subsonic

conditions at the boundary, R" can be evaluated from free stream conditions

outside the computational domain, and R + is evaluated locally from the

interior of the domain. The local normal velocity and speed of sound on the

boundary using Riemann invariants, are

ub= _- R +R"

(3.16a)

)
(3.16b)

The Cartesian velocities are determined on the outer boundary by decomposing

the normal and tangential velocity vectors irtto components.

For supersonic inflow/outflow conditions at the farfield boundaries, simple

zeroth-order extrapolations are used with the direction of the extrapolation

dependent on the sign of the local speed of sound.

The inter-subdomain boundaries of the composite mesh, which do not

coincide with the global computational domain boundaries, are required to be

updated through interpolations. Because the Roe flux-difference-splitting

scheme is an exact solution to an approximate Riemann problem, it is

redundant to check inflow/outflow conditions, using locally one-dimensional

characteristic boundary check for the boundary cells. The jump in the

solution at the cell boundary is propagated in the locally correct direction and

added to the existing value to get the solution at the next iteration. However,
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the inflow/outflow check is necessary for a flux-vector-split [31,32] or

central-differenced schemes [32,33].
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Chapter 4

GRID OVERLAPPING METHOD

4.1 Grid Generation

The current grid overlapping method allows the subdomain grids to be

generated independently. Hence, a subdomain grid topology depends upon

neighboring topology only to the extent, that they must overlap and that the

cell sizes in the overlap region are comparable. The reasons are explained in

Section 4.3. Two types of grid generation methods are used in this study,

namely, the algebraic method and the Poisson's equations method.

The algebraic method is one, in which there is a known explicit functional

relationship between the computational and the physical domain [34]. Hence,

algebraic methods are used for simple configurations. The technique uses

stretching functions to distribute points along simple analytic coordinate

curves. They are effective in the area of mesh control at boundaries, but are

less effective in the quality of the interior mesh points, particularly for

complex domains [35]. An interactive computer program, developed by Smith

et al. [36], TBGG, and based on a two dimensional algebraic two boundary grid

generation technique is used in creating several subdomain grids The

essence of a two boundary method is to connect a distribution of points

between inner and outer boundaries, based on a hermite cubic interpolation

procedure.
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For more complicated configurations an elliptic partial differential

equation (PDE) approach, developed by Steger and Sorenson [37], is used to

generate grids. In particular, a computer program called GRAPE developed by

Sorenson [39] is used. The GRAPE program generates two-dimensional grids

about airfoils and other shapes by solving the Poisson's equation,

_xx + _= P (4.1a)

rlxx+ 1]:o,= Q (4.1b)

Particular parameters, such as control of the spacing between mesh points and

control of the angles with which mesh lines intersect the boundaries, are

incorporated into the right hand side functions P and Q. An iterative

procedure is used to solve these equations.

Both codes, GRAPE and TBGG, generate two dimensional grids. Three

dimensional grids are developed by simply stacking ihe two dimensional

planes in the third dimension. Further enhancement of cell clustering within

if_

:7

"2'.-

" i

high viscous regions are accomplished by a parametric curve fitting

procedure. Also, farfield rectangular subdomain grids are created using simple

algebraic methods with exponential clustering in viscous regions.

4.2 Overlapping Algorithm

The grid overlapping "chimera" algorithm developed by Benek et ai. [13-15]

is modified to serve for a multigrid, finite volume (as well as finite difference)

Upwind solution algorithm. The modified version is given the name MaGGiE,

short foi" M___ulti-_Q.eometry Grid Embedder. The algorithm with its modifications

for a finite volume and multigrid solver is discussed initially, and then the

topic of subdomain grid communications through interpolation procedures is

discussed. These modifications and implementations are the bases of this study.

The program MaGGiE creates a three dimensional composite mesh from

! =

:!

,il

individual subdomain grids, and the necessary intergrid communications. The
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subdomain grids create holes in other subdomain grids in which they are

embeddedor overlapped.The holes that are created in the grids are excluded

from the solution. To obtain a logical sequence of grid communications

between overlapped grids, a form of grid hierarchy is needed. An order of

hierarchial form between the grids allows the interaction of appropriate

grids, simplifies the development of the data structure required for this

interaction, and limits the search to locate points in other grids for the

purpose of interpolation. Grids which are on level L of hierarchy are

designated GI,I where 'i' is the grid index on level L. In general, grids on a

given level L are partially or completely embedded in grids of level L-1. Grids

on level L may overlap other grids of level L, and they may contain grids of

level L+I partially or completely embedded in them. Fig. 4.1 shows an example

of such a hierarchial grid arrangement.

MaGGiE's composite mesh generation consist of : (1) establishing the proper

lines of communication among the grids through appropriate data structure;

(2) constructing holes within grids; (3) identifying points with holes and

illegal zones (solid surfaces); (4) locating points from which outer and hole

boundary values can be interpolated; and (5) evaluating interpolation

parameters. The MaGGiE code is divided into six stages. The first three stages

are used to acquire finest level grid communication data, and the last three

stages are used to acquire multigrid level communication data. Each stage is

described in the following subsections, and an overview flow chart is given In

Fig. 4.2.
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4.2.1 Hole Boundary

The composite grid generation starts with the subdomain grids being

translated and rotated to their proper locations relative to fixed, global origin.

If cell center interpolation data between connected grids are needed, the

subdomain grids are transformed from cell vertices to cell center points. The

transformed grids are created in Stage 1 and are used throughout the six

stages. The cell center grids are created by averaging the coordinates of the

eight cell vertices (Fig. 4.3). For example, the x-coordinate of the cell center is

calculated as

Xi_= Xi,j.k + Xi+l,j.k + Xi+t,j+l.t+ Xi,j+l.k + Xi,j+l.k+l + Xi,j.k+l + Xi+l,j.k+l + Xi+t,i+l,k+ 1

(4.2)

Collapsed cell centers and edge points are defined on the last grid planes in the

three coordinate directions. This is done to create the same number of cell

centers as there are nodes. The collapsed cell centers are calculated by

averaging the four vertices of a cell surface. For example, the collapsed cell

center on the KMAX plane is calculated as

4X i,ija._x =

(4.3)

The edge points are defined on the IMAX, JMAX and KMAX grid comers. For

example, the grid edge formed by the intersectionof the JMAX and KMAX

planes of the grid is calculatedas

_1_ (X _ + Xi+td,mx,km_//2
X i,in_t,kn_ =

(4.4)
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After creating the cell center grids, it is important to note that the physical

space constructed by the cell centers is less than the space constructed by the

nodes. Thus, care is needed in connecting cells located at and near boundaries.

A search method is used to locate the holes created in each subdomain or

global grid caused by other overlapped subdomains. The search procedure can

be divided into six steps.

Step 1: An initial hole boundary is specified as a surface, C, in the

overlapped grid Gl+l,i (Fig. 4.4). The T index of GI+I,I will be dropped from now

on for convenience.

Step 2: Outward normal vector, N, is constructed at each hole surface cell

center using a vector cross product technique. Further details of this

technique are given in Appendix A.

Step 3: A temporary origin, Po, of the initial hole is located by averaging

the hole surface coordinates.

Step 4: A maximum search radius, RMAX, is defined as the maximum

distance from the origin of the hole to a cell on the hole boundary surface

(Fig. 4.5).

Step 5: The initial search determines whether a cell point (P) from the grid

G I lies within the search radius RMAX. If the cell P lies within the search

circle then a vector dot product test is used.

Step 6: A vector dot product (NeRp) is computed, where Rp is the position

vector from a hole surface point to a cell point P in GI (Fig. 4.5). If N o Rp>0, the

cell P lies outside the initial hole; otherwise the cell P lies inside the initial

hole and thus is defined as a hole point in grid GI.

Figure 4.6 shows a hole and its boundary in grid GI generated by the

overlapped grid GI+I. A hole point is flagged for grid GI by setting an array

IFLAG=0. A cell of GI which is not in the hole, is flagged by setting IFLAG=I. The
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next task is to locate the G I cells which are immediate neighbors of the hole

cells. These are called fringe cells, and the intergrid c0mmunication of

conserved variables from GI+ 1 grid is performed on these cells. A fringe cell is

also flagged IFLAG=0. The fringe and hole cells in grid GI are shown in Fig. 4.7.

A cell in GI+I with the shortest distance to a fringe cell in GI is located and

called a TARGET cell. The TARGET cell is the starting point in the search for the

cells are used for interpolation. The number of ceils in GI÷I, surrounding the

fringe cell in GI, that need to be connected depends upon the order and

accuracy of the interpolation procedure.

A trilinear interpolation procedure is used in the intergrid communication

of conserved variables. The significance, accuracy and Conservative nature of

using trilinear interpolation is discussed in a following section.

Once a target cell of GI+I is located, a search is conducted to locate seven other

cells in O1+1 near the target cell. The objective is to form a hexahedron which

has the seven cell centers and the target cell as the vertices, such that the

hexahedron includes the fringe cell of Gi. The information is transferred from

the eight cells, that define the vertices of the interpolation cell of GI+ 1, to the

fringe cell of GI using trilinear interpolation. A typical interpolation cell of a

body fitted grid is a warped hexahedron. The trilinear interpolation can only

be used on cubes. Each interpolation cell containing a fringe cell at which a

function value is to be interpolated is mapped to a unit cube using

isoparametric mapping. Isoparametric mapping [39-41] is the proces s of

defining the same function that describes the geometry of the element as the

function used to interpolate spatial variations of a variable at location P within

the element (Fig. 4.8). The isoparametric mapping assumes that the

transformation
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between the natural _, 11, _ coordinates and the global X, Y, Z coordinates is

unique. The order of the polynomial function used to represent the field

variable within an element depends upon the number Of nodal variables to

evaluate the coefficients of the polynomial. Hence, the interpolation cell has

eight nodal variables, and thus leads to the transformation/interpolation

equation of the following form,

f=az+a2_+a3_+ a4_+a 5_ +a 6_ _ +a 71"!_+ a 8_ _ (4.5)

where a i, i-1 .... 8 are coefficients depending on the values of fi at the vertices of

the unit cube (Fig. 4.8). _, 11, _ are coordinates of the interpolated cell, P,

relative to the target cell in the unit cube. The unit cube is mapped so that

0 _ _, 1], _ _ 1. For example, a l= fl is obtained when ( _, 11, 4) = 0, 0, 0. The other

coefficients are

a2=-fl+f2

a3=-fz+f 4

a4=-fl+f 5

as=fz-f2+f3-f 4

a6=fz-f2-f5+f6

aT=fl-f4-fs+f8

a 8=-f 1+ f 2- f3+ f4+ f5- f 6+ fT- f8
(4.6)

Identifying the origin of the cube in the interpolation space relative to the

coordinates in the physical space as ( 0, 0, 0 ) = ( X, Y, Z )i, j, k, the fi values

with the vertices become

fl =f i,j,k

f2 =f i+l,j,k

f3 =f i+l,j+l ,k

f4 =f i,j+l ,k

f 5 = f i,j,k+ 1

f6 =f i+ 1,j,k+l

f7 =f i+l,j+l ,k+l

f 8 = f i ,j+l ,k+l
(4.7)

Note, the interpolation stencil can be identified by the target cell ( i, j, k )

because the other seven vertices are an extension of it. This simplifies the
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storage requirements for the interpolation data, since only the information

for the target cell is needed. The last agenda of the interpolation procedure is

to determine the values of _, 11, _ from the isoparametric mapping. The

transformation data is the same as the interpolation data. The isoparametric

equations mapping the interpolation space to the physical space is given by

the following,

X=a l+a2_+a3Tl+ a4_+a 5_TI +a 6_+a 7T1 _+ a 8_T1 _

Y=b l+b2_+b311+ b 4_+ b 5_TI + b 6_ _ + b 7rl _ +b 8_rl _

Zfc 1+c2_+C3T1+ c 4_ +c 5_1"1 +c 6_ _ +c 7T! _ +C 8_TI _ (4.8)

Note, the equations for X, Y, Z are the same as the Eq. (4.5), where f is replaced

by X, Y, Z . The coefficients al, bi, and Cl are evaluated using the physical

coordinates of the eight vertices of the interpolation cube. The coordinates X,

Y, Z are the coordinates of the fringe cell, P, in grid GI. Since X, Y, Z of the

fringe cell are known and the coefficients are known, the interpolation data _,

11, _ are found using an inverse mapping. The values for _, rl, _ corresponding to

the fringe cell are determined iteratively by applying the Newton's method of

locating roots of a set of algebraic equations. The system of algebraic equations
: 7 - : : ) "- : :

(Eq. 4.8) can be written in the form

Newton's method gives

for each iteration, where

R=G([)-X=O

..,n+ I ..,n -I n

0F i
M , ._

'a j

(4.9a)

(4.9b)

(4.1o)

(4.11)
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The Jacobianmatrices M and M "1 are given in Appendix B. For each fringe cell

in grid GI the respective target cell in GI+I and its interpolation data are stored.

In certain cases, the trilinear interpolation procedure fails for particular

boundary cells. For those boundary cells that lie within another mesh that

cannot obtain interpolation data corresponding to the three coordinate

directions with values between 0 and 1, zeroth-order interpolation is used. The

zeroth-order interpolation is performed from the TARGET cell, which is at a

minimum distance away. There are several possible causes for failure of the

trilinear interpolation or isoparametric mapping procedures. Failure can

occur if the interpolation cell, that contains the boundary cell is extremely

warped, which may cause improper transformation to the cube space, or if the

Newton's iterative method of determining _, 11, _ from the system of equations

fail. A loss of accuracy occurs at these cells with zeroth-order interpolation.

Because the number of zeroth-order cells is usually less than five percent of

the total number of boundary cells, this method is usually acceptable. Only two

of the six test cases (Chap. 5) contained boundary cells which use zeroth-order

interpolations. The inclusion of zeroth-order interpolation procedure in

MaGGiE increases the robustness of the grid connection algorithm for

subdomains of different topologies.

4.2.2 Outer Boundary

The procedure described in Stage 1 for fringe ceils is repeated in an

opposite manner at the outer boundary cells of the overlap region where

information is transferred from the grid Glto the grid GI÷ 1. Again, target cells

in GI and interpolation data are determined for the outer boundary cells in grid

GI+I.
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4.2.3 Output Format

In Stage 3, illegal communications between subdomain grids are checked,

and grid connections with interpolation data, for the finest grid level, is

written in a vectorized form as an output. Illegal communication between

subdomains occurs, when one or more of the interpolation cell vertices is a

fringe cell or an outer boundary cell (Fig. 4.9). In Fig. 4.9, an interpolation cell

of grid GI includes a fringe ccU as one of its eight vertices. Information is

being transferred from the eight vertices to an outer boundary cell in GI+ 1.

Simultaneously, the fringe cell in Gi is receiving its information from an

interpolation cell in Gl.l. Hence, there is a redundancy of information being

passed between the grids Gi and Gl+l, and most importantly, this causes a loss of

conservation across the boundaries. The risk of illegal communication

between fringe cells of GI and outer boundary cells of Gl+l is decreased with the

increase in the width of the overlapped region, and the reduction of the order

of accuracy in the interpolation procedure (or reduction in the width of the

interpolation stencil). However, reducing the order of accuracy of the

interpolation reduces the accuracy of the global solution on a subdomain.

For each mesh the following information is given:

(1) vector sets (JI(i), KI(i), LI(i) ), which contain the indices of the

reference cell for each interpolation stencil,

(2) the corresponding interpolation coefficients (DXI(i), DYI(i), DZI(i) ),

(3) vector sets (JB(i), KB(i), LB(i) ), which contain the indices of cells in

mesh GI, GI+i, etc. that have values interpolated from other grids.

(4) a cross-index list, IBC, which is a pointer to the updated boundary values

that arc retained in memory in a single-index list, QB, of the flow

solver.

(5) the IFLAG array, which defines holes cells by the value IFLAG =0
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A brief description about how the output data is used by the flow solver is

summarized in section 4.7

4.2.4 Composite Grids for Multigrld Method

The objective of Stages 4,5 and 6 is to obtain grid connection data for

coarser grid levels, so that the information can be used by a multigrid flow

solver for composite meshes. The coarser level grids, say M, are generated

from the finest level grids of each subdomain as explained in Section 4.4. One

of the criteria used in creating coarser level composite grids, is to create the

holes in such a manner, that during a restriction stage of a multigrid cycle,

the restricted functional values are not contaminated by the hole cells on the

finer level grids. Secondly, the hole cells of the coarser grids, GI, are connected

to the cells at the coarser levels of other grids, GI+I. This is done to avoid the

contaminated information being transferred from within a hole of the coarser

grids to non-hole cells of the next finer grids, during the prolongation stage.

The hole cells in the coarser grids are created from holes in the finest level

grids of the composite mesh. A search sequence of locating eight finer level

cells that make up a coarser level cell is accomplished, such that, if at least one

of the eight finer cells is a hole cell, which is designated IFLAGM=0, then the

coarser level cell is designated IFLAGM=0. If none of the eight finer cells are

hole cells, then the coarser level cell is an exterior cell, and it is designated

IFLAGM=I. M denotes the coarseness level of the grid. The above procedure of

defining holes in the coarser subdomains eliminates the restriction errors

caused by the holes in the finest level mesh. There are no restriction errors

because the restricted value of a coarser cell is determined by weighted values

of eight finer cells that make up the coarser cell. The above sequence is

repeated for each coarser level of the composite mesh.
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Once the hole cells in the coarser subdomain grid, GI, are located, a search is

conducted for interpolation data for these cells, with IFLAGM=0, from a coarser

subdomain grid, GI+I. This search can only fail for those cells of G I at level M

which coincide with, for example, the body around which the grid GI+I is

generated. Such a zone is designated the ILLEGAL ZONE (see Fig. 4.10), and their

cells are left with the flag IFLAGM=0, as they are effectively excluded from this

coarse level flowcalculations. The IFLAGM values of all the other cells, which

now have interpolation data, are switched from 0 to 1, and are included within

the calculations on the coarser subdomains. They are switched, because these

cells are used to prolonge their functional values to the next finer level

excluding the illegal zone.

Stage 5 of MaGGiE locates the outer boundary connection ceils of the

overlapped region, where the interpolation is accomplished from the coarser

level of GI to the coarser level GI+I Such outer boundary cells of GI+I, for

which interpolation data are now available, are flagged as IFLAGM=0. Note,

that on the coarser grid levels, the definition of the overlapped region

between grids is changed. It is no longer an outer-band region around the

embedded grid. Instead, the overlapped region becomes the entire hole region

defined by the finest level embedded grid. The results of this change allows

proper prolongation to occur in the multigrid flow solution algorithm. All of

the information obtained above for the hole cells, illegal zones, and outer

boundary cells is written in a data vector form for the multigrid solver in

Stag e 6 0f MaGGi E.

An option is built into this algorithm, where one can choose the grid level

of GI+I, from which the interpolation is to be performed to the coarse level of

G I. The obvious choice is searching interpolation data between grids on the

same level. If the cells involved in the interpolation are of comparable sizes at
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the finest level ( as it is desirable for accuracy), they are again of comparable

sizes at the coarser levels. This option increases the success in forming the

interpolation cells, but it decreases the accuracy because interpolated values

are not properly averaged over the entire physical space that the coarser cell

occupies. Also, this option eliminates the possibility of mesh sequencing [21],

where Eq. (2.1) is solved at the same coarse level of all the subdomains until

some convergence is reached.

4.3 Overlapped Region in a Composite Mesh

The width of the overlapped region is dependent on the width of the

interpolation formula, the stencil of the spatial differencing, and the

smoothness of cells. Too much overlap between subdomains results in

unnecessary duplication of computations in these regions and too little

overlap results in illegal or lack of communications between subdomains. Five

to ten cells overlap is found to be efficient for finest level grids. The objective

is to create each subdomain grid independently in such a manner that when

one grid is overlapped/embedded within another the cell sizes of both grids

are of the same order within the overlapped region. This is not a necessary

condition, however the transference of solution from one grid to another

through interpolation becomes more accurate the closer the cell sizes are. The

accuracy improves for similar cell sizes because most interpolations functions

are weighted by physical distances and not percentage of cell volumes.

4.4 Inter-Subdomain Conservation

For subdomain grids, which in general overlap each other in an irregular

fashion, it is desirable to use conservative interface procedures. Such a

practice helps, for example, finding the correct shock location for shocks

passing through grid boundaries, and ensures artificial shocks are not

generated at grid interfaces. This section introduces some of the approaches
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currently being considered to maintain conservation at the overlapped

boundaries. It should be noted that this study uses the nonconservative

trilinear interpolation approach for intergrid communication. The trilinear

interpolation has been discussedin Section 4.2.1.

A preliminary study was done by Berger [42] on a general procedure, for

deriving conservative interface conditions that give weak solutions to the

differential equation, if they converge on one and two dimensional overlapped

grids. Let U be a weak solution to a hyperbolic system of one dimensional

conservation laws,

Ut+f{U}x=0

Ulx, t=0J=U 0{x}

which satisfies the integral equation

f f UOt+f(Ul(I)xdxdt+ f Uo{x}O{x}dx=O

(4.12a)

(4.12b)

(4.13)

for any smooth test function _(x,t). The conservative interface conditions can

be derived based on the direct numerical approximation of Eq. (4.13). If a

conservative scheme is multiplied by _(x,t), Ax, and At and summed over all

grid points, it can shown that a discrete approximation to the integral

converges exactly by the numerical scheme. A discrete approximation of the

nteg ai, --i r

-I JS u {x, t dx (4.14)

(4.15)

is

s--X
J

using the trapezoidal rule. The approximation is generalized at the boundaries

of irregular grids, such as, the overlapped grids. Alternatively, the
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conservative interface condition can be derived using a finite volume

approach, and balancing the spatial flux at the interface (in two dimensions),

f f F =f f F On
(4.16)

where F(1) and F(2) are the spatial fluxes of grid (1) and grid (2) in the

overlapped region, respectively. In the general two dimensional case, the

interface equation for the flux across the interface cell is a linear

combination of the neighboring fluxes,

N

F=Z i o_if i
(4.17)

with coefficients, ai, determined by the amount of overlap and the integration

rule. The steps to implement such a flux balancing is to determine the weight

of the cells in the integration rule, and determine the amount of the main

grid's flux to be apportioned to the boundary cell. Because two quadrilateral

grids can intersect in a many sided polygon, depending on the mesh ratios of

the grids, these steps can be complicated, and when extended to three

dimensional grids they can become too expensive and complicated to warrant

their usefulness.

An alternative to conserving the spatial flux across overlapped boundaries

is to conserve the time flux, Q, of the cell center at the boundaries. The

conserved variables Q refer to the time flux of mass, momentum, and energy.

In the overlapped region, the conserved time flux can be expressed in three

dimensions as

f f f Q{')d_d_d_=f f f Q{2)d_d_d_ (4.18)

where Q( 1 )and Q(2)are the time fluxes of grid (1) and grid (2) respectively.

The time-flux conservation approach has been found to maintain the
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conservative properties at the boundaries within truncation errors [43,44].

The conservation of time flux is accomplished by interpolation to the cell

centers of one grid assuming a weighted variation of time flux with the cells of

the other grids. For the interpolation procedure to be conservative, the

weighted variation of the time flux should be dependent on the percentage of

volume of the cells of GI, that overlap a cell in GI+ 1. However, to find the cell

volume weighted variations for three dimensional grids is a geometrically

complicated procedure that usually cannot be generalized.

Another approach, which is used in this work, is to use a nonconservative

interpolation procedure that has the same properties as the conservative

procedure. In the nonconservative approach, the weighted variations are

usually dependent on the linear distances between a boundary cell and its

surrounding interpolation cells. Nonconservative interpolation assumes

continuity of the interpolant. Polynomial expansions can be used as

interpolation functions. The number of coefficients in the polynomial should

equal the number of nodal variables available to evaluate these coefficients.

Linear variation of a variable within an element can be expressed by

functional values at the nodes. For example, a hexahedron element in three

dimensional grid has eight nodes or vertices, hence, an incomplete polynomial

expansion of eight terms in the linear form (Eq. 4.5) is used in the

interpolation procedure. This interpolation procedure is also known as

trilinear interpolation which was discussed previously. Higher order

interpolation methods, such as, quadratic and cubic variations, require

additional installation of nodes at various points within the element. However,

interior nodes are undesirable because additional nodes lead to complications

in formulation and computations.

- i
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4.5 Global Accuracy

An important issue in regards to the interpolation is its effect on the

overall accuracy of the solution. The degree of continuity and the amount of

conservation of the flow variables that can be maintained have been

investigated previously [19,20]. For the overall accuracy to be as good as the

discretization formula used for Eq. (2.1), it is shown that the width of the

interpolation formula should be ( 1/4 pr + 1) if the width of the overlapped

region is constant. In this formula, p denotes the order of the differential

equation being solved, and r denotes the order of accuracy of spatial

discretization. Hence, if the differential equation is of order two and spatial

discretization is of order two, then the width of the interpolation formula is

two. Two sets of fringe and outer cells are needed for second-order accurate

matching of the solution to second-order differential equations being solved

here. Having two sets of boundary cells, in effect, is transferring fluxes from

grid GI+I to grid GI. However, using a second set of boundary cells increases the

width of the needed overlapped region to ensure correct grid connections

without illegal communications. The risk of illegal communication between

fringe cells of GI and outer cells of GI+I is increased by either having two sets

of boundary cells, or a smaller overlapped region. Also, increasing the width

of the interpolation formula increases the storage memory and the run time of

the flow solver, because there are twice as many cells to update.

4.6 Modified Solution Algorithm

Modifications are made to the implicit, finite volume, multigrid algorithm

(Chap. 3), in order to recognize the multiple, overlapped subdomains with

holes. The standard block or scalar tridiagonal inversions for Eq. (2.1), or its

approximate diagonalized counterpart, are altered for the case of overlapped

grids with holes. To treat the hole, fringe, and outer boundary cells, the
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following modifications are made: (1) set the off-diagonal 5x5 blocks in the

coefficient matrix to zero, (2) set the diagonal elements of the diagonal block to

unity, (3) set the residuals to zero. This results in the computed values of AQ for

these cells to be zero. Since AQ of the fringe and outer boundary cells are zero,

the specified boundary conditions for these cells are automatically preserved.

For example, let one of the spatial factors of Eq. (2.1) be written as a system of

algebraic equations in block tridiagonal form as

.=Ra ij * ¢I) I i
(4.19)

where a lj are the 5x5 blocks of coefficient tridiagonal matrix. _i are the

unknown vectors, which represent AQ of Eq, (3.7). The right hand side residual

is represented by R i which are the known vectors. Then,

R i * IFLAG i --->R : (4.20a)

a ij * IFLAG i --->a ij , i _: j (4.20b)

i)+(1- ,
where (--'>) indicates that its right hand side is to be replaced by its left hand

side (Fig. 4.11). The IFLAG is zero or one, depending on if IFLAG is a hole cell or

not. The diagonal elements of the block a ij are set to unity. If the approximate

diagonal form is used, then this process is repeated three times for each

direction. The discretization of the right-hand side of Eq. (2.1) uses a five-point

stencil for second-order spatial accuracy. In order to avoid the erroneous flux

from a cell in a hole, when computing a cell neighboring a fringe point, the Q

value of the neighboring hole cell is set to the Q value of the fringe cell.

In the current domain decomposition method the existence of holes caused by

embedded or overlapped grids complicates the implementation of a standard

muhigrid algorithm. If the standard multigrid algorithm is used for multiple

subdomains with holes, the restriction and prolongation stages would use cells
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which lie within holes, to transfer information from coarser to finer grids and

vice versa. This is an undesirable trait of multigridding for multiple

subdomains, for the obvious reason, that the hole cells do not contain correct

solution information of the subdomain.

The procedure for creating holes and illegal zones in coarser level grids

from the finer level grids described previously in Section 4.2.4 eliminates the

problems that occur in the restriction stage. Any cell in the coarser level grid,

that obtains a volume weighted restriction value made up of at least a hole cell

in the finer level grid, is labeled as a hole cell. However, these hole cells on

the coarser level grids, excluding the illegal zone cells, have interpolation data

obtained from the connected grids. Thus, they can be used in the restriction

and prolongation stages. The solution is transferred between the coarser grids,

GI and Gi+l, over a larger physical domain than the overlapped regions of the

finest level meshes. There is an increase in the physical domain where

updating occurs, However, the actual number of cells being updated in the

coarser level grids is usually less due to the decrease in the number of grid

cells. Each coarser level three dimensional grid reduces its number of cells by

a factor of 1/8 of its finer level grid cells. Also note that the standard block or

scalar tridiagonal inversions for Eq. (2.1) arc executed at the coarser levels,

after the modifications are made analogous to Eq. (4.20) with IFLAGi being

replaced by IFLAGMi.

Modification is needed in the prolongation stage to nullify the weight of

the contributions from the illegal zone cells. Note "that no such modification

for the illegal zone is needed in the restriction stage, because the illegal zone

of the coarser grid is inside the hole of the finer grid. The prolongation is

performed from the coarser cells, say C1 and C2, to pseudo finer level cells, say

fl and f'2 (fl is closer to C1 than f'2), in one direction as,
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AQf1---(A1*AQc1)+(B1*AQc2) (4.21a)

(4.21b)

where

A l= IFLAGMcl [1-(b*IFLAGM c2)]

B1 =IFLAGMc2[1-{ a* IFLAGMct)]

A2 = IFLAGM c i [I-(a* IFLAGM c 2)]

B2 = IFLAGM c2 [ 1-(b* IFLAGM c,)]

(4.22a)

(4.22b)

(4.22c)

(4.22d)

and a,b are the bilinear interpolation constants (0.75 and 0.25). The IFLAGM=0

flags the illegal zone cells at the coarser level. This process is repeated in the

second direction, using the pseudo finer level cells of the first direction.

Finally, when this process is repeated in the third direction with Eq. (4.21),

and using the finer level cells of the second direction, the corrections are

recovered for the actual finer level cells. The results of this process is a

trilinear interpolation with small bias around the illegal zone. More details of

the modified algorithm is given by Baysal et al. [44] and Fouladi [45].

4.7 Procedure for Solution Algorithm

The steps to advance a subdomain solution of a composite mesh are: (1)

update the boundary cells of a subdomain cells by using specified boundary

conditions or interpolation values; (2) solve the subdomain flow field with the

implicit, finite-volume, upwind scheme; (3) interpolat e the conserved

variables for intergrid communications for the boundary cells of other

subdomains; (4) repeat steps 1 to 3 for each subdomain mesh of the composite

mesh in the hierarchial order. Hence, there are two functions that the flow

solver-must perform on the interpolation data. The first function is t° update

the inte_olati0n boundaries, and the second function is to interpolate data for

'i _
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the boundaries of the subdomain grids. To accomplish both of thcsc tasks, the

interpolation data structure is of vector form (refer to Section 4.2.3).

The flow solution on a subdomain GI, GI+I, etc. is advanced in time. The

interpolation boundary cells defined by the indices JB(i), KB(i), LB(i) are

updated from the flow solver, QB, list of interpolated values through a cross

index array IBC(i). Next, the solution of the subdomain is advanced excluding

the hole cells which are designated by IFLAG=0. From the advanced solution,

the interpolation values for other connected subdomains are solved using the

interpolation reference cells given by the indices JI(i), KI(i), and LI(i). These

interpolated values for connected grids are then loaded into the QB vector to be

used in updating boundaries of overlapped subdomains. The process is repeated

for each solution iteration on the composite grid. The number of solution

iterations on a subdomain grid at one time is case dependent. However, it is

computationally more efficient to have more than one iteration step at a time,

since the process of obtaining interpolation data, updating, and switching the

solution algorithm from one subdomain to another, arc costly. The problem

with having more than one iteration performed on a subdomain, is that the

interface boundary conditions are frozen for those iterations. More than one

itcration on each domain is permissible if a converged steady state solution is

sought, but if the flow is unsteady or time dependent, then one iteration per

grid is necessary for a time accurate solution.
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Chapter 5

APPLICATIONS OF GRID OVERLAPPING

Six composite grid cases are considered in developing and demonstrating

the Multi-Geometry Grid Embedder scheme. Composite grids and connection

data (i.e. interpolation data) are obtained for all six cases, and computational

flow results are shown for five of these cases [44,45]. These cases are:

(1) Single level composite grid and connections for a blunt-nose

cylinder grid (BNC) embedded within a Cartesian farfield.

(2) Multigrid composite grids and connections for BNC embedded within

a Cartesian farfield.

(3) Composite grid and connections for BNC overlapped with an outer

grid of similar topology (C-O).

(4) Composite grid and connection for an ogive-nose cylinder (ONC) in

the proximity of a flat plate.

(5) Composite grid and connections for a cylindrical store model

connected to an L-shaped sting embedded within a Cartesian farfield.

(6) Composite grid and connections for a cylindrical store model with

fins and a curved sting positioned above a rectangular cavity.

The first three cases are for the same blunt-nose cylinder (BNC) geometry,

which are investigated in [44,45]. These three cases are used to validate the

finite volume grid connections procedure for single and multigrid levels and

to check the conservation across grid boundaries. The last three cases are to
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test the versatility of MaGGiE for more complex composite mesh

configurations.

Note that the composite meshes and solution contour plots given for each

case are cell centers. The plots are based on the cell centers to eliminate the

probable errors in representing the solution near jagged hole boundaries,

caused by the normal averaging of the finite volume solution, to obtain grid

nodal values. This allows correct assessment of contour lines crossing

interface boundaries without error produced in the averaging procedure.

S.I Case I: Blunt-Nose Cylinder in a Cartesian Grid (Single Level)

A boundary fitted C-O grid, which is wrapped around the BNC, is embedded

completely within a Cartesian global grid (Fig. 5.1). The flow Mach number is

1.6, the Reynolds number is 2x106 per foot, and the total temperature is 585

degrees Rankine. The BNC is at 32 o angle of attack. The rationale behind this

test case is threefolds. (i) A simple body-fitted grid for a body of revolution,

such as a C-O grid, is topologically very different than a Cartesian grid. (ii)

There is a computational solution available for this case which is obtained on a

C-O grid only [21], i.e. without overlapped grids (iii) There is experimental data

available for comparisons [46].

The blunt nose cylinder has a base diameter (D) of 3 inches and a length of

20 inches (Fig. 5.2). The body fitted C-O grid around the BNC is generated using

program GRAPE. It is used to generate a two dimensional C-type grid around

half of the BNC. The C-grid is rotated 360 degrees around the body centerline to

create a three dimensional C-O grid (Fig. 5.3). Clustering in the viscous region

near the body is enhanced by a simple parametric curve fitting procedure,

which uses the Bose-Einstein Function,
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where

S2-St
F=SI+

I "1-k x-x

1 - c (5.1)

Si= Ax + B (5.2)

and x* is the intersection of lines S1 and $2 in a coordinate space where 0<x<l

and 0<S<I. (A) and (B) are the slope and starting values of the lines Si,

respectively. (F) is the parametric curve fitting function. The Cartesian outer

grid is generated using a simple algebraic technique. Clustering is done in

three directions, in the region where the BNC is embedded, to ensure

consistent cell sizes within the overlapped regions between the two grids (Fig.

5.4). Both meshes, BNC and Cartesian, are simply generated grids, and hence

provide and excellent test case for creating a composite mesh. The BNC mesh is

positioned in the center of the Y-Z planes of the Cartesian mesh (Fig. 5.4). The

composite grid dimensions are given in Table 5.1.

The composite mesh and its interpolation data is generated by MaGGiE. A

summary of the number of hole cells and boundary cells is given in Table 5.1.

The hole boundary cells in the Cartesian mesh and the outer boundary cells in

the C-O grid are all connected using trilinear interpolation, i.e. none of the

boundary are connected using zeroth order interpolation. Shown in Fig. 5.5 is

the hole boundary surface in the Cartesian grid create d by the embedded C-O

grid. These hole boundary cells of the Cartesian grid are connected to the C-O

grid within the overlap region. The overlap region, including outer boundary

cells in the longitudinal and crossflow planes, are shown in Figs. 5.6, 5.7,

respectively. The outer boundary cells of the C-O grid are connected to the

Cartesian grid within the overlap area. All communications between the two

subdomain meshes take place within the overlap region. A ten-cell overlap

between grids is specified to ensure that no illegal communications between

hole cells and boundary cells occur (Figs. 5.6, 5.7). The ten-cell overlap is not

[
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necessary for proper grid connections; however, it is not the intent of this

work to determinethe optimum width of the overlap region, but instead to test

the feasibility and accuracy of MaGGiE grid connectionresults.

Initially a mesh sequencingstrategy is used on the individual subdomains

to reduce the amount of computational time required to overcome the initial

transient states [44,45]. The logarithm of the residual history for the finest

grid level solution of the composite mesh is shown in Fig. 5.8. Convergence

rate indicated in 900 work units is approximately 0.99. Work units (WU) is

defined as the total CPU time divided by the CPU time for one global iteration,

WU = CPU tOJcPU iter.
(5.3)

The longitudinal pressure coefficient ( Cp ) distribution on the leeside

surface of BNC is shown in Fig. 5.9. Superimposed on this figure are the results

from [21,44,45]. The results obtained on a single C-O grid are slightly better

than those on the composite grid. This is somewhat anticipated since _-

constant surfaces of C-O grid follow the flow stream surface closer than the _-

constant surfaces of the Cartesian grid. Presented in Fig. 5.10 are the

normalized pressure contours of the longitudinal symmetry plane for the

composite mesh and the single C-O grid without embedding. It should be noted

here that when using the three dimensional data of different subdomains to

plot in two dimensions, one can not find longitudinal or lateral surfaces of

these subdomains which match in location or in curvature. This results in

some discrepancies across boundaries. Also the postpr0cessing of the data,

especially in curve fitting near intergrid boundaries, is restricted to the

capabilities of the plotting programs. In any event, the contour lines cross the

intergrid boundaries rather smoothly. The shock freely crosses the interface
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between subdomains with the correct angle. The contour lines of the

composite mesh match quite well with that of the single C-O grid. The crossflow

density contours at the base of the BNC are shown in Fig. 5.11a. The leeside

vortices pass freely through the intergrid boundary. Some minor distortions

may be attributed to the fact, that the Cartesian section of the crossflow

surface in Fig. 5.11a is planar one, as opposed to that of the single C-O grid (Fig.

5.11b) which is curved. Their trends and magnitudes, however, agree very

well. Qualitatively, there is little loss of conservation across boundaries in the

streamwise as well as crossflow directions. The combination of the trilinear

interpolation at intergrid boundaries and the use of Roe flux-difference-split

scheme appears to maintain time conservation across intergrid boundaries.

5.2 Case 2: Blunt.Nose Cylinder In a Cartesian Grid (Multi-Level)

The second case involves the C-O grid of the BNC embedded completely

within the Cartesian global grid in the same manner as in Case 1. The

composite mesh flow conditions are also identical to those of case 1 (Section

5.2). This case is used to test the coarser subdomain level intergrid

communications with the multigrid, finite volume solution algorithm. The

results are compared to the computational solution on a single C-O grid, and the

experimental data, as well as the results on the composite mesh without

multigrid acceleration. Two levels of intergrid boundary interpolation data are

generated by MaGGiE. Two grid levels are considered minimum to verify the

plausibility of using a multigrid solution scheme on a composite mesh. The

first and second level grid dimensions are given in Table 5.1. Figure 5.12 shows

the coarser level composite mesh.

An illegal zone of one cell from the surface of BNC on the coarser grid level

is specified (Fig. 5.13). The illegal zone created in the Cartesian mesh on the

second level is shown in Fig. 5.14. The number of illegal zone cells is given in
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Table 5.1. All of the coarser level hole cells of the Cartesian grid and the outer

boundary cells of the C-O grid are connected using trilinear interpolation, i.e.

no cell on the coarser subdomain grids are connected using a zeroth order

interpolation.

The solution obtained [44,45] using the multigrid scheme are the same as

the single-grid scheme. Therefore, to eliminate repetition, contour plots are

not given. The same initialization of subdomains used in the single-gridding is

used as the starting solution in this multigridding case. This ensures accuracy

in comparing the two cases. The effectiveness of the multigrid scheme on time

history of the residual of the finest grid level of BNC is shown in Fig. 5.8.

Convergence rate obtained in 900 work units is approximately 0.98. If more

than two levels of grids were used, the savings in CPU time would be more

dramatic. This would require the interpolation information to be generated at

more than two levels of grids. The increase in the number of coarser levels do

not greatly increase the amount of storage memory for interpolation data,

because the number of hole cells needing interpolation data decreases with

each coarser grid level. Most of the increase in memory is due to the modified

multigridding algorithm for the composite mesh. The two-level multigrid

computations of the BNC case requires 25 megawords of computer memory, as

opposed to 21 megawords for single-level computations on the fine grids.

Each multigrid V-cycle consists of one time step calculation on two grid

levels of each subdomain. This cycling strategy is chosen over the more

computationally efficient alternatives (such as more time steps on each level

or more multigrid cycles on each subdomain before switching). These

alternatives seem to be more economical (computation time), but may result in

inaccuracies in the solution due to frozen interpolated values of the intergrid

boundaries.
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Overall, the multigrid inter-subdomain communications data compares well

to the single-level results, and offers a big advantagein computing (timewise)

the flow on a compositemesh.

5.3 Case 3: Blunt-Nose Cylinder With Two Overlapped, C-O Grids

Grids which overlap at a surface, similar to grid patching, is denoted here

as simple overlapping. The C-O grid of the blunt-nose cylinder is simply

overlapped with an outer C-O grid of similar topology. The purpose of this case

is twofolds:(1) to check the finite volume grid connection procedure for

simply overlapped grids, (2) to eliminate some of the problems associated with

plotting the flow solutions from multiple subdomains, in order to check the

smoothness of contour lines as they pass across these interfaces. For this case

the Tl-_ surfaces of the two C-O grids lie in the same plane.

Both the outer and inner C-O grids are created from the original single C-O

grid of dimensions 81x65x57 with respect to _, 11, _ coordinates. The inner BNC C-

O grid is created by discarding the last 16 _-planes of the original C-O grid (Fig.

5.16), and the outer shell is created by removing the first 32 _-planes (Fig.

5.17). The outer grid is also rotated two degrees, so that the TI constant lines do

not match between the two grids. Hence, when the two subdomain grids are

combined to create a composite mesh, an overlapped region is formed with

and _ constant lines being identical. The Tl-constant lines within the

overlapped region do not match, because of the outer grid rotation of two

degrees.

A problem arises when the general grid overlapping/embedding

procedure is used for grids overlapping along a constant boundary surface. In

the general procedure, a hole is generated in a grid by another grid.

Communication between grids occur within the overlapped region. Simply

overlapped grids do not generate holes. There are two different overlapping
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methodsthat can be used in this case. The first method is to simply connect the

overlapped grids at their outer boundary cells, hence there are no fringe

cells, or hole cells generated. The second method, which is used in this case, is

to define the interface boundary surface as a hole. This creates a hole

boundary neighboring the hole in the connected mesh. For this case, the hole

is specified, such that the hole cells are on thc _=1 constant surface and the

holc boundary is at the _=2 constant surface of the outer C-O grid. The outer

boundary of the inner C-O grid is specified at _=41 surface. An eight cell

overlapped region is defined between the connected inner and outer C-O grids.

Shown in Fig. 5.18 is the hole boundary surface in the outer C-O grid and

the outer boundary surface in the inncr grid, where the interpolation is being

performed. The overlapped region in the longitudinal and crossflow directions

arc shown in Fig. 5.19 and Fig. 5.20. The grid dimensions and the number of

hole cells and boundary cells arc given in Table 5.1.

The normalized pressure contours on the longitudinal symmetry plane of

the composite mesh are presented in Fig. 5.21 [44,45] The contour lines

compare well with that of the single C-O grid without embedding. The interface

boundary between the two grids is shown by a border line, separating the two

sets of contours. Although there arc two degrces difference in the longitudinal

vl-planes between the outer and inner grids, the contour lines cross the

interface in a continuous manner with no jumps unlikc what is shown in Fig.

5.10 of Case 1. The longitudinal planes of these grids arc closer in the physical

space than those of Case 1 involving the C-O and Cartesian grids. Because of

this, the contour lines are more continuous and represent closer to the actual

values across the interface. Hence, most of the jumps in the contour lines

across the interface in Fig. 5.10, may be contributed to the inadequacies in

plotting procedures and not the interpolation method.
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The normalized crossflow density contours are presented in Fig. 5.22. The

contours at the base of the blunt-nose cylinder lie on the same G-plane for the

two grids. Hence, assessment of the contour lines crossing the interface can be

made without plotting errors. Again, the contours compare well with respect to

the solution on the single C-O grid shown in Fig. 5.10. The lines are continuous

across the hole boundary. However, in the outer grid near the interface, the

density contours slightly change angles with respect to the inner grid lines.

They correct themselves away from the boundary. This phenomena is not seen

in the composite grid and the single C-O grid shown in Fig. 5.11. The cause

could be related to a slight loss of conservation across the hole boundary.

5.4 Case 4: Ogive-Nose Cylinder Near a Flat Plate

The fourth case is the flow past an ogive-nose cylinder (ONC) with a sting

in the proximity of a flat plate wing. The flow is turbulent at zero angle of

attack with Mach number 2.86, Reynolds number 2x106 per foot, and the total

temperature of 610 degrees Rankine. Because there are two components of

different geometries in this configuration, employing simple grids requires

the overlapping technique. The objective of this case is to apply the

overlapping method to a more complicated flow interaction between bodies of

nonsimilar topologies. There are alternative methods to discretize the domain

of a cylinder near a flat plate without using the present method. These

methods [47,484 however, can not use simple grids such as a C-O grid and a

Cartesian grid. They require three dimensional surface grid generators.

Furthermore, the grid interfaces need to be planar or the grid lines going

across these interfaces need to be continuous.

The C-O grid of the ONC is embedded in the Cartesian grid of the fiat plate

wing at a nondimensional distance of Z/D=3.5, where Z is the normal

coordinate direction and D is the diameter of the cylinder. The base diameter
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and the length of the cylinder are 1.2 in. and 21.6 in., respectively (Fig. 5.23).

Shown in Figs. 5.24, and 5.25 is the composite mesh. The ONC grid is created in a

similar fashion to the BNC grid of Case 1. A two dimensional C-type grid is

generated using the program GRAPE, and rotated 360 degrees about the

centerline axis to generate the three dimensional C-O grid (Fig. 5.26). The

Cartesian grid is generated with exponential clustering in the viscous region

near the flat plate wing. The grid dimensions and physical domain are given

in Table 5.1.

The composite mesh is created with a 7 cell overlapped region between the

Cartesian and the C-O grids. Shown in Fig. 5.27 and 5.28 is the composite mesh

with the overlapped region. The hole boundary is created in the Cartesian

grid, such that in the _-direction, 10 cells of the ONC grid lies within the hole.

Because the ONC lies near the flat plate, the outer boundary of the C-O grid

needs to be within the physical boundary of the Cartesian grid for proper ONC

outer boundary connections. Hence, the distance of the ONC above the flat

plate is a grid constraint for the ONC grid. If the ONC grid is allowed to extend

out of the Cartesian grid, below the flat plate, an irregular boundary surface is

needed, The MaGGiE code is capable of handling such a case, if the flat plate is

considered a boundary that creates a hole in the ONC grid. The part of the C-O

grid lying outside of the Cartesian grid is considered to be the hole. The hole

boundary created in th C-O grid lies within the Cartesian grid. Hence, an

irregular boundary surface is created for proper connection between the two

grids. However, this case is not done to minimize the complexities of creating a

composite mesh. The number of boundary and hole cells of the composite mesh

are given in Table 5.1.

The flow solutions presented in Figs. 5.29-32 for this case lacks

experimental data for comparison [44,45]. The Mach number contours of the
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longitudinal plane of symmetry are shown in Fig. 5.29. An enlarged view near

the grids' interface is given in Fig. 5.30. The contours cross the boundary

somewhat smoothly with small jumps due to mismatch of grid planes in the

plotting procedure. The interaction of the cylinder forebody shock, and the

boundary layer of the flat plate, is followed by the reflected recompression

waves impinging on the cylinder aftbody. The influence of the reduced

pressures in the region between the cylinder and the flat plate is observed as a

reduction of Cp values on the flat plate (Fig. 5.31). They are slightly negative

almost everywhere except in the region where the shock impinges. The

interference of the flows is further demonstrated by the Mach number

contours at the cross flow plane at the base of the nose (Fig. 5.32). The shock

imparts a significant momentum on the fluid particles in the normal and

spanwise directions.

5.5 Case 5: Store Model with L-Sting in a Cartesian Grid

Case 5 involves a more complicated composite mesh made up of three

different grids, each with a different topology. The composite mesh is created

for an ogive-nose store connected to a L-shaped sting in a Cartesian farfield

(Fig. 5.33). The flow Mach number is 1.6, Reynolds number is 2x106 per foot,

and the total temperature is 584.7 degrees Rankine. This case is used to; (1) test

the capabilities of connecting grids together where solid surfaces meet, (2)

connect half grids of symmetric bodies for finite volume interpolations, (3)

connect more than two grids with a general hierarchy format (Fig. 4.1).

Half body grids are used in solving flowfields which are assumed

symmetric about a particular plane. The use of half grids is a valuable tool in

reducing the computational time of complex flow fields. However, these grids

complicate boundary connections near symmetry planes for the finite volume

interpolation method. At the symmetry plane of the composite mesh, the cell
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centers of different subdomain grids do not all lie within the same physical

plane. Because cell center grids are used, the outer and hole boundary points

near the symmetry plane need to be connected. For finite difference grids,

these boundary points at the symmetry plane are taken care of by the

symmetry boundary conditions. The general zeroth-order interpolation

method is used to connect the cell center points at the symmetry plane, which

lie outside of a connected grid. These cells reduce local order of accuracy at the

symmetry plane.

The three types of half grids generated to cover the entire flow domain are:

(i) Cartesian farfield grid; (ii) H-O grid around the store; (iii) O-H grid around

the sting. An alternative method is to use a single grid which covers the entire

flow domain. The three half grids are created separately, each using a

different grid generation technique.

The H-O grid is generated around the store grid using a three step process.

The physical dimensions and shape of the store cylinder are shown in Fig.

5.34. A two dimensional body fitted H-grid is generated around the store half

body using the program GRAPE. Clustering is done along the body at the ogive

nose cylinder and near the base of the store where the sting is connected.

Next, enhanced clustering is done in the viscous region near the body using

parametric curve fitting procedure as previously described. The last step is to

rotate the H-grid 180 degrees, thus creating a half body three-dimensional

store grid. A variable degree of rotation is used, such that in the region of the

sting the rl-lines are clustered. This allows higher probability of connecting

the store and the sting grids. The store grid is shown in Fig. 5.35.

The L-shaped sting grid is generated with two constraints. These

constraints are: (1) the base of the grid needs to lie completely on the surface

of the store for proper grid connections and boundary conditions (see Fig.
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5.36); (2) the grid needsto extend out of the Cartesianfarfield becausethe top

boundary of the sting is not defined. The physical dimensionsand shapeof the

sting is shown in Fig. 5.34. The O-H grid is generated in several steps using

simple grid techniques. A cross sectional two-dimensional O-grid is generated

using the TBGG program (Fig. 5.37). The third dimension of the O-H grid is

created by stacking th O-grid in the E-direction. The curvature of the E-planes

are dependent upon the height of the sting and the radius of the store. At the

sting base, the curvature of the E-plane is determined bY the radius of the

store. Hence, the sting matches the store surface for proper grid connections.

The length and width of the outer boundary of the O-grid increase linearly

with the height of the sting. This is done to create a larger physical space for

the overlapped region (Fig. 5.38).

The Cartesian farfield mesh is generated using simple algebraic

techniques. The dimensions of each subdomain grid are given in Table 5.1.

The composite mesh is generated using the program MaGGiE (Fig. 5.39). A

general composite grid hierarchy is used in this case. The three grids are

connected to each other. The Cartesian farfield grid is the global grid, denoted

as GI,1. The store grid and the sting grid are on the same composite grid level

denoted by G2,1 and G2,2, respectively. The grids G2,1 and G2,2 are connected to

each other and to grid GI,1. The store grid creates a hole in the Cartesian grid.

The sting grid creates a hole in the store and Cartesian grids. When the sting

creates the hole in the store grid, a hole is generated on the surface of the

store body since they are connected. Hence, the boundary conditions at the

connected surface can be specified completely within the sting grid for the

flow solver. The hole boundary cells surrounding the store are shown in Fig.

5.40. The overlapped region between the store and Cartesian grids is eight cells

(Fig. 5.41). The overlapped region between the sting and store grids is also
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eight cells (Fig. 5.42). The overlapped region between the sting and Cartesian

grid is 15 cells. The larger overlapped region is necessary because the

Cartesian grid is not clustered in the region of the sting. The Cartesian cell

sizes are larger than the cell sizes of the sting grid. From the viewpoint of the

accuracy of interpolation, this is not desirable, because the interpolation is

dependent on distance between cells and not the weighted cell volumes. The

Cartesian grid clustering is generated for the purpose of connecting to a

rectangular cavity grid for future work. The number of hole cells and

boundary cells for each mesh is given in Table 5.1.

A total of 220 cells, out of 11,029 hole and outer boundary cells, use zeroth-

order interpolation method, instead of the trilinear interpolation method for

connections. This is less than two percent of the boundary cells. These cells

are located at the symmetry plane. This is expected, because the cell center

grids do not align themselves with each other at the symmetry plane of the

composite mesh.

The flow solutions of the composite half body grids arc presented in Figs.

5.43-45. The subdomain grids are initialized by the freestream conditions.

Initially, the subdomain grids of the store and sting are run separately, but

instabilities in the solution occur, because of the small physical domain sizes

of the grids. Hence, their solutions are not used to initialize the composite

mesh. Finest level calculation, without mesh sequencing and multigridding, is

used to develop the composite flow field. Shown in Fig. 5.43 are the

longitudinal density contours at the symmetry plane of the composite mesh.

The contour lines pass smoothly across the interfaces. There are no artificial

shocks created at the boundaries. At the base of the store the expansion and

compression waves pass also smoothly across the interface. A complicated flow

occurs behind the sting, where the base flow of the sting interferes with the
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base flow of the store. There are interactions of compression and expansion

waves. A top view of the longitudinal density contours around the sting is

shown in Fig. 5.44. At the interface between the sting and Cartesian grids, the

compression and expansion waves cross smoothly without distortions. A three

dimensional composite view of the density contours is shown in Fig. 5.45. This

figure represents the type of complex flowfields that can be accommodated by

the overlapping/embedding method.

5.6 Case 6: Store with Fins and a Curved Sting Near a Cavity

A composite mesh is generated for a configuration of a store with fins and a

curved sting positioned above a rectangular cavity. There are five subdomain

half body grids within the composite mesh. The five half grids are: (1) a

farfield Cartesian grid above a cavity; (2-4) three H-O zonal grids around a

store with fins and a sting; (5) a Cartesian zonal cavity grid. This case is used to

demonstrate the overlapping/embedding capabilities of MaGGiE for a

composite grid made up of more than three grids using zonal and overlapped

half body grids.

Zonal grids are grids that are patched together along a constant surface.

Across the zonal interface the grid lines can be discontinuous or continuous

depending on the conservative treatment at the boundary. The zonal grids

used in this example are one to one cell matching, hence the grid lines are

continuous across the interface. One to one cell matching is the best method

for conserving fluxes across boundaries.

i

The two Cartesian grids are generated using simple algebraic techniques

with parametric and exponential clustering. The cavity grid is connected to

the farfield grid at the first E-constant plane. There is one to one matching of

cell centers at the zonal plane (Fig. 5.46). An alternative method of connecting

the two grids is to =Overlap them. However, one to one matching is done at the
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interface to conserve the fluxes exactly. This is important for cavity flow,

where there is an unsteady shear layer propagating across the top of the

cavity and mass being pumped into and out of the cavity. Hence, although the

cavity is included within the composite mesh, the grid is not connected to any

other grid by the overlapping procedure.

Each of the three zonal H-O store grids with fins and extended sting is

generated using the three dimensional surface grid generation code EAGLE

[49,50]. The combination of the three grids create the half store body (Fig.

5.47). The three zones are shown in a cross sectional view of the store in Fig.

5.48. The zonal _-planes define the fin surfaces. There is a one to one matching

of cell centers across the zonal surfaces above the fins.

The composite mesh is generated using the MaGGiE code. A simple composite

overlapped hierarchy is used in this case. The three store grids are connected

to the Cartesian farfield grid only. The Cartesian farfield grid is the global

grid, denoted as G1,1. The three store grids are on the same composite grid level

denoted by G2,1, G2,2, and G2,3, respectively. The cavity grid is considered to be

on another composite grid level, G3,1. However, this grid is not being used in

the grid connection scheme. The three store grids create a hole in the

Cartesian farfield grid away from the fins (Fig. 5.49). To create such a hole

using the zonal grids, a simple modification is done. The three grids are

combined into one grid to create the hole. Next, they are separated to obtain

proper grid connections to the hole and outer boundary cells. This

modification is needed because the specified hole boundaries around the zonal

grids cannot be defined properly to be used in the hole cells search method

described in Section 4.2.1. Shown in Fig. 5.50 is the hole boundary cells of the

Cartesian mesh that are connected to the store grids. There is a 15-cell

overlapped region between the store grids and the Cartesian mesh. The 15 cell
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overlap is needed because the Cartesian cell sizes are much larger than the

store cell sizes in this region. Figure 5.51 shows the overlapped region in the

longitudinal plane of the composite mesh. The number of hole cells and

boundary cells for each subdomain mesh is given in Table 5.1.

A total of 457 cells, out of 10,805 hole and outer boundary cells, use the

zeroth-order interpolation method for connections. These cells are located

near or at the symmetry plane of the composite mesh. This is expected because

the cell center grids' symmetry planes do not lie in the same physical plane.

This phenomena is also noted in Case 5, where half body grids are also used.

5.7 Comparisons and Comments

The first three cases, used in validating the overlapping/embedding

procedure for finite volume multigrid levels, provide valuable insight into

understanding the problems of conserving fluxes across interfaces. The

results of these cases compare well with the solution obtained on the single-

domain BNC grid. The jumps in contour lines across the interfaces is

considered mostly due to inadequacies of the plotting procedure and slightly

due to a loss of conservation. _

The last three cases provide a variety of different problems that can occur

when creating a composite mesh of cell centers for a real configuration. The

sting that is associated with each store is included as part of the configuration

to represent actual experimental tests. The stings are used to support the stores

within the wind tunnels. The problems that are dealt with are: (1) bodies in

close proximity of each other; (2) half body connections at symmetry plane;

(3) zonal grids with overlapped grids; (4) general overlapped and simple

overlapped hierarchiai connections for a composite mesh.

Iterations of the overlapping/embedding method is needed for each case.

The iterations are used to define hole and outer boundaries of each subdomain
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for proper grid connections. However, these iterations can be eliminated, if

careful consideration of grid sizes and clustering within the overlapped

region are done. Overall, creating the composite meshes is straightforward.

The composite mesh connections are dependent upon the generation of the

subdomain grids to a certain degree. However, the subdomain grids are

generally of simple topology.
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Chapter 6

CONCLUSIONS

A domain decomposition method, called grid overlapping/embedding, is

used in simplifying computations on three-dimensional complex

configurations. The overlapping/embedding method divides the flowfields into

simpler subdomains. These domains are either completely embedded within

each other, or simply overlapped. The overlapping procedure is developed to

create composite meshes using cell center grids for finite volume solution

algorithms. A procedure is developed for overlapping coarser level grids in a

composite mesh for multigrid solution algorithms. The product of this

investigation is a computer code, given the name MaGGiE, (Multi-Geometry

Grid Embedder). MaGGiE is developed to take independently generated

component grids and their overlapping structure as input, and it creates a

composite mesh and interpolation data to be used by a finite volume solution

algorithm with or without multigridding.

The overlapping method is applied successively to six composite grid cases.

The conclusions are listed, which are drawn from the experiences with

these cases, may be outlined as follows:.

(1) The subdomain grids of the composite meshes are easily generated

using simple grid techniques.

(2) Finite volume grid connections are made for all six cases. The solutions

obtained on the composite meshes compare well with the
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experimental, analytical, and single-domain calculations, where

applicable. The longitudinal pressure contours and cross flow density

contours for the Cases 1-3 compare well with the solution on the

single-domain grid. A slight loss of conservation is noticeable near

the hole boundary in the crossflow density contours for the simply

overlapped Case 3. Although there are no experimental data for the

composite grid solutions of the ONC case or for the store/L-shaped

sting case, their solutions are considered reasonable for such complex

flows.

(3) The nonconservativc trilincar interpolation method, which is used

with the Roe flux-splitting scheme, transfers the time fluxes across

the mesh boundaries with little loss of conservation. No artificial

shocks are created at the boundaries. Compression and expansion

waves pass across the interfaces with little dispersion.

(4) The multigrid connections are implemented for the composite grid

case of the BNC embedded within a Cartesian farfield. The coarser level

grids are easily connected. The convergence rate of two-level

multigrid computations is about 0.98 as opposed to 0.99, which is

obtained without multigridding..

(5) An overlapped region of 5 to 15 cells is found to be adequate for proper

grid connections without redundant information being passed

between subdomains. However, a parametric study of the optimum

width of the overlapped region has not been done.

6) The grid connections on the coarser grid levels, excluding the illegal

zones, are independent of the overlapped regions of the finest level

meshes.
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(7) Zonal grids are incorporatedwithin the compositemesh of Case 6 with

little modification to MaGGiE.

(8) Introducing the zeroth-order interpolation procedure increases the

robustness of the grid overlapping/embedding method for cell center

grids, specifically, at outer boundaries, such as, symmetry planes and

surface contacts.

The recommendations for future work are listed below.

(1) The dependence of the rate of convergence of the solution on the

width of the overlapped regions, should be investigated.

(2) The conservation across the interfaces using a wider interpolation

stencil, i.e. increasing the set of hole and boundary cells to two,

should be investigated.

(3) The MaGGiE code should be optimized in order to integrate the code

within a solution algorithm for dynamic grids.

(4) An accurate method of plotting composite grid solutions should be

developed, for better determination of interface interactions at

nonmatching grid planes. =:: =
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Figure 5,1 Composite grid of a blunt-nose cylinder in a Cartesian mesh
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Figure 5.2 Schematic or the bluni-nosc cylinder (BNC)
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Figure 5.4 3-D composite view of the BNC em_dded in a Canes_ao mesh
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Figure 5.5 The hole boundary in Ihe Cartesian Mesh crested by the BNC
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J Figure 5.i0 NormaIized pressure contours on the symmetry piano

of the BNC computed on a) the composite grid,
b) the single C-O grid without embedding :
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Figure 5.11 Normalized density contours on the crossflow plane
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Figure 5.16 Inner shell BNC C-O grid of the simple overlapped case

Figure 5.17 Outer shell BNC C-O grid of the simple overlapped case
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Figure 5.18 Hole boundary and outer boundary in the composite
BNC slmplc overlappedcase

//
/

Figure 5.19 Ovcrlapped Rgion-ln the symmelry-plan¢ of lh¢-slmple composite
BNC ca_ _:_

Figure 5.20 Overlapped region in thc crossflow plane of the simple composite
BNC case
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Figure 5.21 Normalized pressure contours on thc longitudinal planc of thc
BNC simple case

\
1.00

1.03

\

Figure 5.22 Normalized density contours on the crossflow plane of the BNC
simple case
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Figure _f.23 Schematic of the ogivc-nose cylinder (ONC)

If"

Fiai/¢ Plate

Figure 5.24 3-D view of _e ogive-nosc cylinder in a Cancslan mesh wi_ all
overlapped region

i I i7711 i ii IZLLIH i i i I t/it i i' ....

IIIIIItJlIIIIIItlIltlIJ_IJJLI
Ittiflttlttl!Jllltllllr]_
IIIttlltlJlllllltllillll_
llllllltttlllll] _
iititlltliiii_il'iiii[jj[]il iiii
i iiijAkLlttli!tltttt/tl/ll 1 -,
tillS'lilt i l|]t t i
Ilttl ' i///lllllrl ....

tlillltlllif]

Figure _.2] Symmetry plane +¢-omposite view o7 the ollve-nose

cylinder near • tlai plato
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Figure 5.26 Ogive-nose cylinder C-O mesh

Figure 5.27 3-D view of an ogive-no_e cylinder in a Cartesian mesh with __

overlapped region

=

Figure 5.28 A detailed symmetry plane view of the composite ONC
mesh with overlapped rcgion
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2.40

Figure 5.29 Mach number contours on the symmetry plane of the composile
ONC which is ai (3.5D) distance from the flat plate

Figure 5.30 Detailed view of Mach contours on the symmetry plane :
of the composite ONC mesh
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Figure 5.31 Pressure coefficient contours on the surface of the fiat platc
with the ONC at (3.5D) distance

".05---_

Figure 5.32 Crossflow Mach number contours at the forebody-cylinder
Junction of composite ONC
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Figure 5.39 Composite store connecied to the L-shaped sting in a Cartesian
farfield mesh,

a) symmetry view of the composite mesh

Figure 5.39 Composite storeconnected to the L-shap_ sling_n a Cartesian ......
farfield mesh, =- _ ........

b) holes generated in the cartesian mesh Caused by the : :
embedded grids ..... _ : __
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FJlPml _1.40 This bolls boundal_ suffice in Ihe Clnesiln mesh lhal surrounds
the store and stlnl grids

Figure 3.41 Overlapped regio n between Ihe store, sting,and Caneslta lrkls.
i) 8 cell overlip_ _j|o_ il lh@ _Oll o_ _11 iio_

b) 8 cell overlapped region at the basil of'the store

F"ilP_re 3.42 Dezailcd view ot' zhe overlapped region bezween dze slom
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OF POOR QUALITY

1.35

Figure 5.43 Symmetry plane normalized density conzours of the composite
store and sting embedded within a Cartesian farflcld

Sting

1.00

Figure 5.44 Top view of the longitudinal density conlours around
the sting in the composite mesh
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Figure 5.45 3-D vlcw o[ the density contours of" the store, sting and
Carlesian composite mesh

Figure 5.46 Rectangu ]at cavity patched to the Cartesian farfield
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Figure 5.47 The combined three H-O grids generate the surface of the store
with fins and curved sting

Zonc 3

Zonc 2

Patched Surface

/-
Zonc 1

Figure 5.48 Cross sectional view of tile Ihrcc znnal grids that dcfinc [hc store
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Figure 5.49 The hole generated in the farfield mesh by the three store grids

Hole SurfaceBoundary

Figure 5.50 The hole boundary surface created in the Cartesian farfield mesh
by the three zonal store grids
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Figure 5._1 Symmetry view of the overlapped region between the store grids
the cartesian farfteld mesh
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Figure A.I Normal vector Io a boundary surrac¢
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APPENDIX A

CALCULATIONS OF NORMAL VECTORS

The determination of a unit normal vector ,N, to a hole boundary cell

surface, used in locating hole cells, is explained in this appendix. The outward

normal vector at a surface cell center is computed by constructing tangent

vectors along grid lines, and performing their cross product. The procedure

itself is simple, but care is needed so that the normal vectors are always

pointing out of the surface. To obtain an outward normal vector, the hole

boundary surface is defined in a counter-clockwise direction from 'i' to 'j'

constant lines for a left-handed coordinate system, or clockwise for a right-

handed system. A section of a boundary surface using a left-handed coordinate

system is shown in Fig. A.1.

The arc lengths along a surface coordinate line are defined by

s l= q/Ax?+Ay?+Azi 2

s 2= x2+A y2+ A zj2

(A.la)

(A.lb)

and

A xi= x{i+l,j)- x{i-l,j)

A xj= x{i,j+l)- x[i,j-1)

(A.2a)

(A.2b)
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The normalized tangents

_..@

vectors ,Ti and Tj, are

Ti = Tx i i +Ty _'ij+Tzi 

Tj= Tx ji +Tyjj + Tzjk

defined by

The

where

components of the tangent vectors are

Tx i = ( x(i+ 1,.j) - x{i- 1fV A st

TYi = ( Y(i+lj)- Y(iI_/A s 1

Tz i = ( z{i+l,j} - z(i- I_A Sl

defined by

Txj= {x{i,j+i}-x(i,j-_/As2

Tyj= {y(i,j+i}-y{i,j-_A s2

Tzj= (z{i,j+l}-z{i,j-_/AS2

A Sl= st{i+l,j}-sI{i-Ij}

A s2= s 2 {ij+l}- s 2 {i,j-l}

The outward normal

tangent vectors,

vector is then calculated by the cross

N ='_ix Tj
--P & A A

N-Nxi+Nyj+Nzk

product

(A.3)

(A.4)

(A.5)

of the

(A.6)

where

And, the unit normal vector

Nx = Tyi* Tzj- Tzi* Tyj

Ny = Tzi _* Tx i- Txi_ T_j

Nz = Txi* Tyj- TYi* Txj

is defined by

where I N 1=4Nx2+Ny2+Nz

(A.7)

(A.8)
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Modifications in calculating the normal vectors are needed at the

boundaries and the corners of the meshes. A two point extrapolation is used at

the edges and an averaging type of extrapolation is used at the comers.

Extrapolation at the J-edge boundaries is given by

RI= ( s lli'j)" s lli'l'J_s xli_ij)_ s 1(i_2,j))

RI1 = 1 + RI

Extrapolation at

Nx = Nx (i-I)* RII- Nx {i-2)*RI

Ny = Ny {i-l)* RII- Ny 1i-2) *RI

Nz = Nz (i-l)* RI1- Nz {i-2)*RI

the I-edge boundaries is given by

RJ= ( s2li'j)" s2(idl_s2li,j_l) - s2(i,j.2) )

RJI= 1 +RJ

(A.9)

Nx = Nx U-l} * PJ1- Nx {j-2) *R3

Ny Ny{j-1}*l_l Ny{j-2)*PJ

Nz= Nz{j-1)* RJ1- Nz {j-2} *RJ

Averaging extrapolation at the four comers is given by

RI= ( s lli'j}-slli'l'j'l} )/_/Slli.l,j_l}. s l{i_2,j_l})

RJ = ( s 2(i'J) - s2{i" 1,j-l_/s 2(i"1,j-1)- s2(i-1,j-2) )

RIRJ = 1.0 + RI + RJ

Nx = Nx(i-l,j-1)* RIRJ- Nx(i-l,j- 1) * RI- Nx(i- 1,j-2) *RJ

Ny Ny(i-I,j-1)*RIRJ Nyli-l,j-1)*RI iy(i-l,j-2)*RJ

Nz = Nz(i-l,j-1)* RIPJ- Nz_i' 1,j-l) * RI- Nzli-l,j-2)*RJ

(A.10)

.(A.11)
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JACOBIAN OF

APPENDIX B

ISOPARAMETRIC TRANSFORMATION

The Jaeobian matrix, M, and

transformation of a hexahedron in

interpolation space is given below.

its inverse, M-l, of the isoparametric

the physical space to a cube in the

M_

a2 + a51] + a6_ + as_ _) _a3+ as_ + a7_+ as_ _)

( b2+ b5Tl+ b6_+ b871 _)(b3+ b5_+ bT_+b 8_ _)

a4+ a6_ +a7Tl + as_l"l)

b4+ b6_ + b7T I + b 8_ T1

_c4+ c6_ + CTrl +c8_rl

(B.1)

M "1 exists as long as the mapping is one to one. Since M is a 3 by 3 matrix, its

inverse can be computed as

[ =
(M_M_-_ M_)-(M__- M_M_I (_ M_-_ M_)]

M-1= .(M21 M33. M23 M31) (M!! M33_ M13 M32) _(M11 M23- MI3 M21) [ 1__.1__

(_"_-_3x) (_,_3_-_1)_1_-_0] _'_

where

(let M = -{M n M2z M33 + M12 M23 M31 + MI3 Mzl M32)

+ (M13 Mzz M31 + M2 M m M_ + M u M23 Myz)

(B.2)

lB.3)

m
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